Leveraging an NQO1 bioactivatable drug for tumor-selective use of poly(ADP-ribose) polymerase inhibitors.
Huang X, Motea EA, Moore ZR, Yao J, Dong Y, Chakrabarti G, Kilgore JA, Silvers MA, Patidar PL, Cholka A, Fattah F, Cha Y, Anderson GG, Kusko R, Peyton M, Yan J, Xie XJ, Sarode V, Williams NS, Minna JD, Beg M, Gerber DE, Bey EA, Boothman DA.
Cancer Cell. 2016; 30(6): 940-952.


Depleting tumor-NQO1 potentiates anoikis and inhibits growth of NSCLC.
Madajewski B, Boatman MA, Chakrabarti G, Boothman DA, Bey EA.
Mol.Cancer Res. 2016;14(1):14-25.


Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers.
Cao L, Li LS, Spruell C, Xiao L, Chakrabarti G, Bey EA, Reinicke KE, Srougi MC, Moore Z, Dong Y, Vo P, Kabbani W, Yang CR, Wang X, Fattah FJ, Morales JC, Motea EA, Bornmann WG, Yordy JS, Boothman DA.
Antioxid Redox Signal. 2014;21(2):237-250.


Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases.
Morales JC, Li LS, Fattah FJ, Dong Y, Bey EA, Patel M, Gao JM, Boothman DA.
Crit Rev Eukaryot Gene Expr. 2014;24(1):15-28.


Catalase abrogates beta-Lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers.
Bey EA, Reinicke KE, Srougi MC, Varnes M, Anderson VE, Pink JJ, Li LS, Patel M, Cao L, Moore Z, Rommel A, Boatman M, Lewis C, Euhus DM, Bornmann WG, Buchsbaum DJ, Spitz DR, Gao J, Boothman DA.
Mol Cancer Ther. 2013;12(10):2110-2120.


Hemoglobin-based oxygen carrier mitigates transfusion-mediated pancreas cancer progression.
Lo KK, Bey EA, Patra B, Benson DD, Boothman DA, Silliman CC, Barnett CC, Jr.
Ann Surg Oncol. 2013;20(6):2073-2077.


An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis.
Huang X, Dong Y, Bey EA, Kilgore JA, Bair JS, Li LS, Patel M, Parkinson EI, Wang Y, Williams NS, Gao J, Hergenrother PJ, Boothman DA.
Cancer Res. 2012;72(12):3038-3047.


Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of beta-lapachone for pancreatic cancer therapy.
Li LS, Bey EA, Dong Y, Meng J, Patra B, Yan J, Xie XJ, Brekken RA, Barnett CC, Jr., Bornmann WG, Gao J, Boothman DA.
Clin.Cancer Res. 2011;17(2):275-285.


Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy.
Blanco E, Bey EA, Khemtong C, Yang SG, Setti-Guthi J, Chen H, Kessinger CW, Carnevale KA, Bornmann WG, Boothman DA, Gao J.
Cancer Res. 2010;70(10):3896-3904.


Prostate cancer radiosensitization through poly(ADP-Ribose) polymerase-1 hyperactivation.
Dong Y, Bey EA, Li LS, Kabbani W, Yan J, Xie XJ, Hsieh JT, Gao J, Boothman DA.
Cancer Res. 2010;70(20):8088-8096.


Intratumoral delivery of beta-lapachone via polymer implants for prostate cancer therapy.
Dong Y, Chin SF, Blanco E, Bey EA, Kabbani W, Xie XJ, Bornmann WG, Boothman DA, Gao J.
Clin.Cancer Res. 2009;15(1):131-139.


In vivo off-resonance saturation magnetic resonance imaging of alphavbeta3-targeted superparamagnetic nanoparticles.
Khemtong C, Kessinger CW, Ren J, Bey EA, Yang SG, Guthi JS, Boothman DA, Sherry AD, Gao J.
Cancer Res. 2009;69(4):1651-1658.


Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations.
Konstantinidou G, Bey EA, Rabellino A, Schuster K, Maira MS, Gazdar AF, Amici A, Boothman DA, Scaglioni PP.
Cancer Res. 2009;69(19):7644-7652.


Nonhomologous end joining is essential for cellular resistance to the novel antitumor agent, beta-lapachone.
Bentle MS, Reinicke KE, Dong Y, Bey EA, Boothman DA.
Cancer Res. 2007;67(14):6936-6945.

An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone.
Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, Minna JD, Bornmann WG, Gao J, Boothman DA.
Proc Natl Acad Sci USA. 2007;104(28):11832-11837.


Beta-lapachone-containing PEG-PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells.
Blanco E, Bey EA, Dong Y, Weinberg BD, Sutton DM, Boothman DA, Gao J.
J Control Release. 2007;122(3):365-374.


New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors.
Bentle MS, Bey EA, Dong Y, Reinicke KE, Boothman DA.
J Mol Histol. 2006;37(5-7):203-218.

Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair.
Bentle MS, Reinicke KE, Bey EA, Spitz DR, Boothman DA.
J Biol Chem. 2006;281(44):33684-33696.

Mornings with Art, lessons learned: feedback regulation, restriction threshold biology, and redundancy govern molecular stress responses.
Bey EA, Wuerzberger-Davis SM, Pink JJ, Yang CR, Araki S, Reinicke KE, Bentle MS, Dong Y, Cataldo E, Criswell TL, Wagner MW, Li L, Gao J, Boothman DA.
J Cell Physiol. 2006;209(3):604-610.

Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.
Nasongkla N, Bey EA, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J.
Nano Lett. 2006;6(11):2427-2430.

Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1.
Ough M, Lewis A, Bey EA, Gao J, Ritchie JM, Bornmann WG, Boothman DA, Oberley LW, Cullen JJ.
Cancer Biol Ther. 2005;4(1):95-102.

Susceptibility of cancer cells to beta-lapachone is enhanced by ionizing radiation.
Park HJ, Ahn KJ, Ahn SD, Choi E, Lee SW, Williams B, Kim EJ, Griffin R, Bey EA, Bornmann WG, Gao J, Park HJ, Boothman DA, Song CW.
Int J Radiat Oncol Biol Phys. 2005;61(1):212-219.

Development of beta-lapachone prodrugs for therapy against human cancer cells with elevated NAD(P)H:quinone oxidoreductase 1 levels.
Reinicke KE, Bey EA, Bentle MS, Pink JJ, Ingalls ST, Hoppel CL, Misico RI, Arzac GM, Burton G, Bornmann WG, Sutton D, Gao J, Boothman DA.
Clin.Cancer Res. 2005;11(8):3055-3064.